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Clebsch-Gordan coefficients for the permutation group 
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Department of Physics, Indian Institute of Technology, Powai, Bombay-400 076, India 

Received 28 March 1980, in final form 7 July 1980 

Abstract. A non-genealogical method is proposed for the reduction of the inner product 
representations of the permutation group S N .  This method of determining the Clebsch- 
Gordan coefficients has been found to be recursive only within a given series. As such it 
permits the direct reduction of products of large-dimensional representations. 

1. Introduction 

The role of unitary groups and their irreducible representations (irreps) in the study of 
many-particle systems has gained considerable importance in recent years (Moshinsky 
1968, Paldus 1976, Harter and Patterson 1976, Sarma and Rettrup 1977). The 
development of useful algorithms for these studies was considerably helped by exploi- 
ting the duality between permutation and unitary groups (Robinson 1961, Kaplan 
1975). This naturally leads us to attempt a better understanding of the algebraic 
structure of permutation groups so that the duality may be exploited further. 

One of the complex features of the permutation groups is the structure of its inner 
product representations. A decomposition of the inner products is complicated by the 
fact that the group is not simply reducible. Secondly, the basis spanning the irreps of the 
permutation group S N  is realised in a genealogical manner (Hamermesh 1962, Kaplan 
1975) and this also adds to the complications. The most detailed studies of the 
Clebsch-Gordan (CG)  coefficients to date relating the basis states of the product 
representation of S N  to those of the irreducible representations have been due to 
Hamermesh (1962) and Schindler and Mirman (1977). A programme based on the 
latter studies was also presented recently. There have also been recent studies of CG 

coefficients for crystallographic space groups by van den Broek and Cornwell (1978) 
and Dirl (1979). In addition, a detailed study of the coupling coefficients for finite 
groups was undertaken recently by Butler (1975). This last article discusses in detail the 
symmetries of the coupling coefficients without restricting them to form elements of a 
real orthogonal matrix. Not only the coupling coefficients but also the recoupling 
coefficients for non-simply reducible finite groups have been dealt with extensively at a 
formal l e ~ e l .  The procedures due to Hamermesh (1962) and Schindler and Mirman 
(1977) are essentially genealogical in nature and require considerable information on 
the subgroups of S N  up to S N - l .  This implies that if we are interested in the CG 

coefficients for the reduction of a given inner product of S N  we have to store and 
retrieve a considerable amount of information. On the other hand, the direct method 
for reduction of inner products of representations of crystallographic space groups (van 
den Broek and Cornwell 1978, Dirl 1979) leads to extremely compact expressions for 
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the CG coefficients. These results were obtained using tensor operators defined in terms 
of triple products of the irreps of the group. The only difficulty in this approach arises 
from the definition of the tensor operators which require summation over group 
elements (cf equation (1 7) of van den Broek and Cornwell 1975 and equations (11.6) 
and (11.17) of Dirl 1979). For the point group content of the space groups this poses no 
problems since the order is quite low. 

In this paper we consider a scheme for the determination of CG coefficients for S N  
which is recursive only within the CG series occurring for the reduction of a given inner 
product. The procedure does not need any information on S,+l and this in itself means 
a considerable reduction in storage. The direct methods due to van den Broek and 
Cornwell (1978) and Dirl (1979) are also difficult to use for S ,  in view of the fact that 
both the order and the dimensionalities of the representation matrices grow rapidly 
with N. Simplifications were effected in the procedure by noting that we needed only 
elementary transpositions and orthogonality relations for determining these 
coefficients. The procedure is outlined in § 2 and illustrated using examples. A brief 
discussion is presented in § 3 .  

2. Reduction of inner product representations of SN 

Consider the inner product [ p ]  x [ v ]  of two irreps [ p ] ,  [v] of SN of dimensionalities f”, 
f ”  respectively. This product representation is reducible into irreducible components 
[A]  of S N  as 

where a:“ is the multiplicity of occurrence of [ A ]  in [ p ]  x [v]. For convenience we may 
assume that the right side of the above CG series is ordered such that [A]  precedes [A’] if 
the first non-zero difference A i  - A  I ( i  = 1,2 ,  . . . , p )  of the row lengths of the Young 
shapes (Hamermesh 1962) of [ A ]  and [A‘ ]  is positive. 

Equation (l), in turn, implies that the basis states lp;  i )  x lv; j )  ( i  = 1,. . . , f”; j = 

1, . . . , f”) are related to I A T ~  ; p )  ( p  = 1, . . . , f A )  through 

where the auxiliary index T A  has been introduced to distinguish between the multiply 

occurring [A].  The factors on the right of equation ( 2 )  are the CG 

coefficients occurring in this particular reduction. 

1962) 
If P is any element of S N ,  we find that equation (2) leads to the result (Hamermesh 

where [PI$’ etc are assumed to be elements of real orthogonal representation matrices 
of S,. Noting that equation ( 3 )  is linear in the CG coefficients weighted by real elements 
of the representation matrices, we find that it is possible to choose the CG coefficients to 
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form elements of a real orthogonal matrix (cf Hamermesh 1962 p 260). This leads to 

A direct method for the determination of the CG coefficients of S N  is to use equation 
(3)  for all permutations P E  S, and the orthogonality relations of equations (4) and ( 5 )  
(Kaplan 1975). This, however, is a formidable task for all but the lowest values of N 
since the number and dimensionalities of the required representation matrices increase 
rapidly with increasing N. It was essentially for this reason that the genealogical 
methods (Hamermesh 1962, Schindler snd Mirman 1977) were developed. 

We now propose an alternative scheme. As a first step consider the identity 
representation of the outer product 

SA, 0 SA, 0 . . . 0 SA, C S N  ( A  1 2 A 2 2 . . - 2  A, ; A I = N) 
1 

where [ A ] =  [ A l ,  AZ, . . . , A p ]  is some irrep occurring in the inner product reduction of 
equation (1). This outer product representation has the dimension (Robinson 1961) 

and can be decomposed into the irreps of S N  as 

where b, is the multiplicity of occurrence of [A'"] in the outer product. If we order the 
right side of equation (7) such that [ A ]  = [A(1)]  < [A'2'] <. . . < [ A ' k ' ]  = [NI, then [A"'] 
and [ A ' k ' ]  occurs only once in the reduction (Robinson 1961). Let us consider an irrep 
[ A ]  occurring in the CG series of equation (1) as induced from the outer product of 
equation (7). In this process we observe that not only [ A ]  but all irreps higher than it also 
occur in the outer product reduction. If we consider the highest row symmetry 
[ A ]  = [ A " ) ]  (say) in the CG series as induced from an outer product of its rows, the only 
one occurring in this outer product which also occurs in the CG series is this [A"']. This 
implies that in order to generate [A (l)]  we use only the subspace spanned by the irreps 
[A\"] 0 [A:'] 0. . . 0 [A!:] of SA\ll 0 SA$ll 0 . . . SA;: E S N .  If, further, we assign the 
first A;'' particles to [A!"], the next A? '  to [A?'] and so on, we find that the state 
corresponding to [A ',"I 0 [A 0 , , ,0 [A::] has a contribution only from the first of 
the Young basis (in the ordering of Hamermesh (1962)) spanning [A")]. The others do 
not admit such a high row symmetry as this basis state. This means that the first basis 
state l [ A ( ' ) ] ~ i ~ ' ;  1) can be specified (to within an ambiguity due to multiplicity) by 
applying the permutations of SA\]) 0 SAy) 0. . . 0 SA;) to IF;  i ) lv;  j )  of equation (1) and 
assuming the product is invariant under all these permutations. This procedure reduces 
considerably the effort involved in the determination of the CG coefficients leading to 

As an illustration, consider the reduction of the inner product [2', 11 x [2, 13] of Ss. 
From the CG series for this product (Wybourne 1970) we find that [A"']= [4, 11 occurs 

l[h"']T~(l); 1). 
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only once in the reduction. Omitting the multiplicity index we represent the first basis 
of this irrep as 

and the standard tableaux spanning [22, 11, [2, 13] as 

12 12 13 13 14 
[22, 11: 1 = 34, 2 = 35, 3 = 24, 4 = 25, 5 = 2 5  

5 4 5 4 3 

12 13 14 15 
2 4 =  2 3 =  2 3 3  2.. 

4 '  4 '  3 '  3 '  [2 ,1  1: 1 = 

5 5 5 4 

If the permutations of S s  are to be used for determining the CG coefficients, we need 
5 !  = 120 of them. However, using the arguments given earlier we observe that we need 
only 4! = 24 of them for determining 

Imposing the requirement that the right-hand side of equation (5) be invariant under 
each of these permutations and using the corresponding representation matrices of S ,  
we obtain the result 

1 ( 1  2 1 I=( 1 4 2 1=( 1 5 3 '  
[4,11 [22, 11 [2, i31 [4,11 [22, 11 t2, i31 [4,11 [22, 11 [2, i31 

all others being zero. Since we are ultimately left with one unknown, it can be fixed by 
normalisation leading to 

The CG coefficients for [2*, 11 x [2,13] leading to other states 1[4,1]; p ) ( p  = 2 ,3 ,4 )  are 
obtainable by successively applying the elementary transpositions (4, 5), (3 ,4) ,  (2, 3) to 
both sides of the above result and using the transformation properties of the Young 
basis under these transpositions. 

In working with this and more complicated examples we noticed that we needed 
only the elementary transpositions of SA:') 0 SA:l) 0 . . . 0 SA;: in order to determine the 
CG coefficients leading to I[h " ) ] ~ ~ ( 1 ) ;  1) in any given inner product series. Since a general 
result of this nature would imply the need for using only N - p l  elementary trans- 
positions of this subgroup of S N ,  we were led to establish this result in a general manner 
as in the Appendix. 

The result established in the Appendix and the arguments given above help 
considerably in determining the CG coefficients of l [ h " ) ] ~ ~ ( l ~ ;  1) occurring in the 
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reduction of [ @ U ]  x [v]. Further, the Young representation matrices have a very simple 
structure for elementary transpositions (Hamermesh 1962). Using these represen- 
tation matrices for an elementary transposition (k, k + 1) (k = 1, . . . , 
A i 1 )  - 1 ; A i” + 1, . . , , A Y ’  + A Y )  - 1; . . .), which relates the standard tableaux t r ,  t ;  to 
t?, t y  respectively in equation (3) we readily obtain the results 

where 

with d r ( k )  ( d , ” ( k ) )  as axial distances between k and k + 1 in t r ( t , ” ) .  On the right-hand 
sides of equation (10) the -(+) sign is to be used if k is an entry in a row preceding 
(succeeding or same row as) k + 1 in the given tableau. 

The procedure carried through above for the CG coefficients leading to I[A‘l’], 
TA“’; 1) could equally well have been applied to the last irrep [A ‘”1 in the CG series of 
equation (1). If /[A(f’]~A(f); 1) is the last of the Young-Yamanouchi basis for [A‘f’] which 
has minimum row symmetry in the CG series, we note that there is no other tableau of 
any other irrep which has greater column antisymmetry. Let hif’, hif’, . . , 1; be the 
column lengths of the Young shape corresponding to this irrep. Then, as before, 
l [ A ” ’ ] ~ ~ ( f ] ;  1)  can be{determihIfgd (to within the ambiguity due to multiplicity) using the 
transpositions of [I ] 0 . . . 0 [lAUf(”] where the first hi” particles define the 
first [lA:”] and so on. In this case we have (k, k + l ) / [A(f)]~A(f) ;  1) = ( - l ) l [ A ( f ) ] ~ A ( f ) ;  I )  for 
k = 1 , .  * .  , hif’ - 1 ; hi” + 1, . . . , hif’ + hif) - 1 ; . . . . For this case equations (8) and (9) 
become 

] 0 [l 
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where the tableau indexing is the same as the one used in the previous example. The 
procedure for determining the CG coefficients leading to other tableaux of this irrep 
foilows as before. 

The fact that we can start at either end of the CG series reduces the effort of 
calculating the C G  coefficients for any irrep in a given series considerably. We now 
consider this problem. 

Let us consider an irrep [A'k'] (k # 1, f )  which occurs in the CG series in the reduction 
of a [ p ]  x [u l .  Without loss of generality we may assume that it is closer to [A "'1 than 
[A" ' ] .  For the basis state l [ A ' k ' ] ;  1) of this irrep, we can, using the procedure 
developed earlier, apply the N - & elementary transpositions belonging to 
S A 1 ( k )  0 S A i k ~  0. . , 0 SA(;;. But now we note from equation ( 7 )  that a reduction of the 
outer product of the identity isrep of this subgroup leads to the occurrence of [A (k-l)], 
[A ( k  -2'], . . ~ , [A"'] with various multiplicities. These irreps occur also in the CG series. 
Hence the state obtained using the elementary transpositions of this subgroup has 
contributions in it from all these irreps. If we have determined the CG coefficients 
leading to the basis for all these higher irreps, we can eliminate these contributions by 
successive orthogonalisations. At  the final stage we will be left with an essential set of 
unknowns equal in number to the multiplicity of occurrence of [A'k'] in [p ]  X [U]. The 
linear combinations which occur with the final set of unknown coefficients are linearly 
independent by construction. A choice in this ambiguous situation (Hamermesh 1962) 
is to choose each of these groups as defining a linearly independent basis state spafining 
[A ( k ) ]  occurring in [ A & ]  x [ U ] .  Schmidt orthogonalisation of these basis states leads to the 
orthonormal set l[A(k)]~A(k); 1) which is the required one. The rest of the basis states 
IIA(k']~A(k~; p )  ( p  # 1) can then be obtained as in the case of l [ A ( l ) ] ~ ~ [ l ) ;  p ) .  If [ A ' k ' ]  is 
closer to [A'"] we can go through the procedure starting from l [ A ' f ' ! ~ A ( f i ;  I ) .  In this 
sense the procedure is recursive within a CG series defined by a given [ p ]  X [ U ]  of S N .  

As an illustration of the complications which can arise in all the above procedures 
consider the reduction of [ 5 ,  2 ,  l2]X[4, 3, 12] of S9 which leads to the CG series 
(Wybourne 1970) 

IS, 2 ,  i2]x[4, 3, i2]-[8, 1]+3[7,2]+3[7, i2]+. . .+[2,1'3. 
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The determination of the basis state I[S, 11; 1) follows readily as in the previous example 
on using the N -PI = 7 transpositions (1,2), (2,3), . . . (7,8) in equations ( 5 ) ,  (8) and (9). 
Using the procedures outlined earlier we obtain the result 

where ( i l )  designates one of the 90 standard tableaux of the S 8  substructure [4, 2, 1’1 
contained in [ 5 ,  2, 12] with 9 in the first row. Similarly (i2) refers to the same 
subtableaux structure as for [ 5 ,  2, 12] occurring in [4, 3, 1’1 with 9 in the second row. 
The basis states for the other 7 standard tableaux spanning [8, 11 can be obtained by 

) and applying (7,8) to applying (8,9) to both sides of equation (13), generating l 8  
this state and so on. As an illustration, applying (8,9) to both sides of equation (15) we 
obtain 

12345679 

) 
1 12345678) ~ J F  li2345679 

-- 8 9  I 

+ ( [ 5 ,  2, 1’1; (i’21))1[4, 3, 1‘1; (i’22)) 
i ’ ~ [ 4 , 1  3 

+ 1’€[4,2,11 c 115, 2, 12]; (i’41))\[4, 3, 1’1; (i’42)) 1 

1 J48 + (-~[5,2~l21; (i‘41))+- 7 1[5, 2, 1’1; (i’14))) 
i’~[4,2,11 7 

1 JE 
x ($4, 3, 121; (i‘42)) +T /[4, 3, 1’1; (224))) 

where i’ is the common subtableau structure of the irreps of S7 indicated on the 
summation sign and 21,12 etc indicate the row occurrences of the entries 8 and 9 in thc 
respective irreps of Ss. PJsing the result from equation (13) for the first term on the left 
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of equation (14) and rearranging and simplifying we obtain 

=-!- [ (-3 1[5, 2, 12]; (i’11))1[4, 3, 12]; (i’12)) 
9J70 I’E[3,2,1] 

+4J31[5, 2 ,  12]; (i’11))1[4, 3, 12]; (i‘21))) 

+ C (31[5, 2, 121; (i’21))1[4, 3, 121; (i’22)) 
i’€[4,1 ] 

+2JE1[5, 2, 1’1; (i‘12))1[4, 3, 12]; (i‘22))) 

1 +- 
7 i’s[4,2,11 

+8J3/[5, 2, 1’1; (i’14))/[4, 3, 12]; (i’42)) 

+2JG1[5, 2, 1’1; (i’41))1[4, 3, 1’1; (i’24)) 

(91[5, 2, 12]; (i’41))1[4, 3, 12]; (i’42)) 

+24&/[5, 2, 1’1; (i’14))l[49 3, 12]; (i’24)))I. (15)  

Consider now the irrep [7, 21 occurring in the CG series for [5, 2, 12] x [4, 3, 1’3. The 
first of the. standard Young tableaux ki34567 is maximally invariant under the permu- 
tations of the subgroup §, @ S2. Choosing a linear combination of products / [ 5 ,  2, 12]; 
i)([4, 3, 12]; j )  which is invariant under the transpositions (1,2), (2,3),  . . . , (6,7), (8,9) 
of this subgroup we obtain 

,- 

JS 
2 J2 

+- 1[5, 2, 12]; (i21))) x 1[4,3, 1’1; (i22)) 

43 + 1 (i141i24) (3 1[5,2, 12]; (i14)) 

+z 1[5, 2 ,  1’1; (i41))) x (--= /[4, 3, 12]; (i24)) 

l€i4,2,11 

2 J3 
2 J 2  

,- 

4.5 
+-1[5,2, 12]; (i42))) + 1 (i141i24) 

2 J 2  ic[4,2,12] 

v 5  J3 
2 J 2  2 J2 

x (-= /[4, 3, 1*1; (i24)) --= 1[4, 3, 121; (i42i)) 

where the notation used is the same as for the previous examples except for the 
coefficients ( iap / iyS) .  The products of these with the respective numerical factors in the 
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1234561 summations can be identified with the CG coefficients leading to /89 ) of [ 7 ,  23 if the 
overlaps with the states of higher symmetry [8, 11 irrep are eliminated. We find that we 
need only to orthogonalise I[8, 11; 1) of equation (13). This process leaves us with three 
unknowns which cannot be unambiguously determined. The linear combination of 
/ [ 5 ,  2, 12]; i)l[4, 3, 1’1; j )  which occurs with each of the unknowns is linearly indepen- 
dent of the others. This allows us to  use the Schmidt procedure to obtain the 
orthonormal basis states listed below: 

x (J31[4, 3, 1’1; (i24)) +J%/[4, 3, 12]; (i42)))J 

+ 1 (9 / [ 5 ,  2, 1’1; (i14))1[4, 3, 1’1; (i24)) 
1 d4,2,11 

The other basis states for this irrep can be derived starting from the above using the 
same procedure as for 1[8, 11; p ) .  
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As a final illustration we consider the state 

of [2,  1’1. This state is totally antisymmetric under the permutations of Ss 0 SI.  Using 
the transpositions (1,2),  (2,3),  . . . , (7,8) in equations ( 5 ) ,  (11) and (12) we can readily 
obtain the result 

where A:4s23121 is i l  or -1 depending on whether i is obtained from the first tableau of 
the set using an even or odd permutation and i is the conjugate tableau to i. The 
procedure for obtaining the states of [ 2 2 ,  3 ’1 etc is the same as before. 

3. Discussion 

The combined use of outer and inner product reductions used in 8 2 has led to a 
reasonably straightforward method for determining the CG coefficients for S, There is 
no doubt that the procedure is not as simple as for the simply reducible groups. This has 
been brought out by Hamermesh (1962), Schiridler and Mirman (1977) and Butler 
(1975). To the best of our knowledge the procedure developed here is the most direct 
method for determining these coefficients for S N .  

The fairly complicated example of the reduction of [ 5 , 2 ,  12] x [4, 3, 1’1 which was 
worked out in some detail was chosen to bring out some of the salient features of the 
method. Firstly, such an example could not have been attempted using earlier methods 
of Hamermesh (1962) or Schindler and Mirman (1977) without a considerable amount 
of stored information on the subgroups of S9. Also this example could not be handled 
using the other direct methods (van den Broek and Cornwell 1978, Dirl 1979) since the 
order of Ss is quite large. Secondly, the fact that only elementary transpositions and 
orthogonality relations are needed for the determination of the CG coefficients is of 
considerable Computational advantage, One more advantage of the procedure is that at 
every stage we have to solve only linear equations. Finally, the fact that a given irrep of 
the CO series can be reached from either end means that the computational effort is 
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reduced by half. It has to be admitted, however, that the ambiguity arising from 
multiplicity has been resolved in a particular way (Hamermesh 1962) which may not 
always be the mostsuitable one. In this context it is to be noted that the procedure due 
to Dirl (1979) also does not lead to unambiguous identification for multiply occurring 
irreps for the group SN. Finally, we have not been able to use the complex conjugation 
and permutational symmetries of the CG coefficients (Butler 1975) for two reasons. 
Firstly, a choice of real coefficients (possible in the cases of S N )  obviates the need for 
coupling conjugation symmetries. Secondly, ours is a technique for attempting a 
reduction of a specific product [ p ]  x [ v ]  leading to a given CG series. This implies that 
we can omit consideration of permutation symmetries except when considering tabula- 
tion of these quantities. 

We are attempting to develop a computer program based on the present work. 
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Appendix 

Consider a functional defined over the permutations P E S N  as 

&gAT*(P) = 1 p ] y [ P k ] j Y ) K ; ; p V  -E [PI;; K p h y  (Al l  
1.1 P 

where [P]‘”’7 [PI‘”’, [PI‘^’ are the real orthogonal Young representation matrices for a 
P E  S N  and Kp”:f” are (as yet undefined) unknowns independent of P E  SN. Let us 
assume that a set of values have been assigned to these unknowns leading to a fixed 
numerical value for q5gATh(R) where R is an elementary transposition (a ,  LY -t 1)(a = 
1, , . . , N - 1) of S N ,  Let R, S be two such elementary transpositions and 

P =  RS. (-42) 

We now observe that d z A T h ( P )  can be expressed as 

q5GATA(P) = qhzArA (RS) 

Since the right-hand side of equation iA3), by assumption, is completely determined by 
just the elementary transpositions we find that there exist no new values of K;:f” which 
are consistent with these values of (RS), @,”kATA(S) and C$K*‘*(R). This argument 
can be extended to any P € S N  since all of them can be expressed as products of 
elementary transpositions. That the converse is also true may be readily verified. Any 
assigned values for the function defined in terms of elementary traiispositions R, S lead 
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to a set of relations among the unknowns. If P is any permutation expressible as in 
equation (A2), we observe that there is only one possible value for 4 $$TA ( R S )  which 
follows from the right-hand side of equation (A3). Thus P = R S  does not define any 
new relation among the unknowns. 

This result being generally true for any values of the functionals, it is also true when 
the unknowns on the right-hand side of equation (Al)  are identified with CG coefficients 
as in equation ( 5 )  leading to an assigned value zero for the functionals for all P E  SIv. 
Thus independent relations among the CG coefficients are possible only with elementary 
transpositions of S N .  
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